Characteristic Analysis of Exponential Compact Higher Order Schemes for Convection-Diffusion Equations

نویسندگان

  • Y. V. S. S. Sanyasiraju
  • Nachiketa Mishra
چکیده

This paper looks at the development of a class of Exponential Compact Higher Order (ECHO) schemes and attempts to comprehend their behaviour by introducing different combinations of discrete source function and its derivatives. The characteristic analysis is performed for one-dimensional schemes to understand the efficiency of the scheme and a similar analysis has been introduced for higher dimensional schemes. Finally, the developed schemes are used to solve several example problems and compared the error norms and rates of convergence.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Fourth-Order Compact Finite Difference Scheme for Solving Unsteady Convection-Diffusion Equations

Convection-diffusion equations are widely used for modeling and simulations of various complex phenomena in science and engineering (Hundsdorfer & Verwer, 2003; Morton, 1996). Since for most application problems it is impossible to solve convection-diffusion equations analytically, efficient numerical algorithms are becoming increasingly important to numerical simulations involving convection-d...

متن کامل

Finite Element Methods for Convection Diffusion Equation

This paper deals with the finite element solution of the convection diffusion equation in one and two dimensions. Two main techniques are adopted and compared. The first one includes Petrov-Galerkin based on Lagrangian tensor product elements in conjunction with streamlined upwinding. The second approach represents Bubnov/Petrov-Galerkin schemes based on a new group of exponential elements. It ...

متن کامل

High Order Compact Finite Difference Schemes for Solving Bratu-Type Equations

In the present study, high order compact finite difference methods is used to solve one-dimensional Bratu-type equations numerically. The convergence analysis of the methods is discussed and it is shown that the theoretical order of the method is consistent with its numerical rate of convergence. The maximum absolute errors in the solution at grid points are calculated and it is shown that the ...

متن کامل

A Stable Multigrid Strategy for Convection-diffusion Using High Order Compact Discretization∗

Multigrid schemes based on high order compact discretization are developed for convection-diffusion problems. These multigrid schemes circumvent numerical oscillations and instability, while also yielding higher accuracy. These instabilities are typically exacerbated by the coarser grids in multigrid calculations. Our approach incorporates a 4th order compact formulation for the discretization,...

متن کامل

Combined compact difference scheme for the time fractional convection-diffusion equation with variable coefficients

Fourth-order combined compact finite difference scheme is given for solving the time fractional convection–diffusion–reaction equation with variable coefficients. We introduce the flux as a new variable and transform the original equation into a system of two equations. Compact difference is used as a high-order approximation for spatial derivatives of integer order in the coupled partial diffe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American J. Computational Mathematics

دوره 1  شماره 

صفحات  -

تاریخ انتشار 2011